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ABSTRACT 
 
 
 

This paper presents a goal-programming model in which the parameters are stochastic. 
The study extends the one-sided probabilistic goal constraints to the case of two-sided 
probabilistic goal constraints with proper formulation, which preserves the original 
characteristic of goal programming. This new two-sided probabilistic goal-constrained 
method is more efficient than the existing methods in that it has fewer constraints and 
decision variables. 
 
The resulting chance-constrained goal-programming method provides an effective way of 
adapting the simplex method, which takes into account the nonlinear behavior of the 
parameters of a model. Furthermore, this proposed method is illustrated through a 
financial and production example. 
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1. INTRODUCTION 

 

Goal programming, introduced by Charnes and Cooper (1), deals with the problem of 

achieving a set of conflicting goals. The objective function searches to minimize 

deviations from the set of pre-assigned goals. Two types of goals are commonly used in 

goal programming models. The first type is a two-sided goal applicable to goals, which 

must be achieved exactly; any deviation, either upward or downward, would result in 

penalty. The second type is a one-sided goal with which only upward or downward 

deviation would be penalized. When uncertainties exist in the goal-programming 

problem, the chance-constrained formulation is often used (2). 

 

There are many applications of chance-constrained goal programming to various areas 

including capital management (3), bank liquidity management (4), capital budgeting (5), 

response resources for marine pollution disasters (6), production planning (7), mental 

health planning (8), and others. The great majority of chance-constrained goal 

programming models consider one-sided goals with very few having two-sided goals.  

The process most researchers used in deriving the associated deterministic equivalent for 

the goals, in the author's opinion, is not entirely correct in two aspects: 1) violation of 

basic probability law, and 2) alteration of original goal. These points are elaborated in the 

next section. The purpose of this paper is to propose an alternative formulation for a 

chance-constrained goal-programming model which preserves the original characteristics 

of the problem without changing the problem's goal. The formulation utilizes the concept 

similar to the confidence interval in statistics. This is explained in the following. 



2. CURRENT FORMULATION OF CHANCE-CONSTRAINED GOAL 

PROGRAMMING 

 

Consider a one-sided goal to which the over-achievement would result in an undesirable 

penalty. That is, the objective is to determine decision variables 1 2( , ,..., )t
nx x x=x  

which makes, if possible, the objective function value not exceed the pre-specified goal, 

G, as 
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j

c x G
=
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in which 1 2( , ,... )nc c c=c  is a vector of objective function coefficients. The 

deterministic goal programming model for such goal is expressed as 
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with  +and  D D− , respectively, representing the under- and over-achievement with 

respect to the goal in which positive penalty is associated with D+  in the objective 

function. It should be noted that throughout this paper a vector is shown by bold 

lowercase letters, and a matrix is shown by bold uppercase letters. When the elements in 

c are random variables, two approaches are found in the literature that convert the 

deterministic equation into the chance-constrained one. One approach is to utilize 

Equation 2 by simply converting it into a probabilistic statement as 
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with α  being the goal compliance reliability. The error committed in this formulation is 

that the modelers failed to recognize that the probability of a continuous random variable 

equaling to a fixed value is zero. This type of error is found, especially, in problems with 

two-sided goals. 

 

The other incorrect approach commonly used to derive the chance-constrained goal 

programming (CCGP) formulation (7, 8) starts with deriving the chance constraint from 

Equation 1 as 
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The corresponding deterministic equivalent of Equation 4 is derived as 

    .5
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in which ( )jE c  is the mean value of the j-th objective coefficient and Σ  is the variance-

covariance matrix of the random objective coefficients. The chance-constrained goal 

programming equation is then obtained by adding deviational variables in Equation 5 as  

   .5
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Comparing Equations 2 and 6, it is observed that the original goal G in Equation 2 has 

been changed in the chance-constrained formation which is not correct. Similarly, the 

above argument is valid for the other type of one-sided goal in which under-achievement 

is to be penalized. 

 



 

 

 

3. PROPOSED FORMULATION OF The CCGP MODEL 

 

The concept of the proposed chance-constrained goal formulation is considered for the 

three possible goal types of stochastic goal programming. The first type represents a two-

sided goal for which the upward and downward deviations are to be penalized. In this 

case, it is desired to obtain a shortest interval that attains the goal, a pre-assigned 

reliability of rα . Second (upward deviation) and third (downward deviation) types 

represent one-sided goals.  In these cases, only upward or downward deviations are to be 

penalized. The reliability of attaining each goal is denoted by sα  and tα , respectively. 

 

A general form of the chance-constrained goal -programming model, based on the goal 

programming format, may be formulated as 

  Minimize 0
1 1 1

( )
R S T

r r s t
r s t

D D D D D+ − + −

= = =

= + + +∑ ∑ ∑    (7) 

Subject to 

  ' , 1,...,r r r r r rP G D G D r Rα− + − ≤ ≤ + > = c x   (8) 

  ' , 1,2,...,s s s sP G D s Sα+ ≤ + > = c x   (9) 

  ' , 1,2...,t t t tP G D t Tα− ≥ − > = c x   (10) 

  [ ]P A β≤ ≥x b        (11) 



  0x ≥          (12) 

  , , , 0,r r s tD D D D+ − + − ≥     for all r, s, and t. (13) 

Where R is the number of two-sided goals, S is the number of one-sided goals for upside 

deviation, and T is the number of one-sided goals for downside deviation. In addition, 

t, and r sα α α  are pre-assigned reliabilities of attaining the corresponding goals. 

 

Constraint 11 represents the regular constraint in a probabilistic form which takes into 

account the randomness of A and b. It can be represented as a deterministic constraint 

when the elements of A and b are all constants. 

 

Constraints 8 through 11 are all probabilistic in a general setting. In order to solve a 

stochastic goal-programming problem, these constraints must be transformed to their 

respective deterministic equivalents. These transformations will be presented in the next 

section. 

 

3.1. Derivation of Deterministic Equivalents for Chance-Constrained Goals 

 

3.1.1. One-sided goals: 

 

The deterministic equivalent for a one-sided goal with only upward deviation can be 

derived as 

   [ ].5' 1( ) ( ) 's x z s sE D F Gα+ − − + • Σ ≤  sc x x x   (14) 

and with downward deviation as 



   [ ].5' 1( ) (1 ) 't s z t tE D F Gα− − − + − • Σ ≥  tc x x x   (15) 

where 1
zF −  is the inverse CDF of the standardized random variable c'x. In case that c'x is 

a normal random variable, then F is a standard normal CDF. These results of 

deterministic equivalents for one-sided goal can be found elsewhere (9). 

 

3.1.2. Two-sided goals: 

 

Consider a two-sided goal constraint:  

   '
r r r r r rP G D G D α− + − ≤ ≤ + > c x    (16) 

It can be expressed as 

   ' '
r r r r r r rP G D P G D α+ −   ≤ + − ≤ − >   c x c x  . (17) 

 

Assume that the elements in rc  are independent normal random variables with mean 

( )jE c  and variance var ( )jc . Standardizing Equation 17 leads to 
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where Φ  is the CDF of the standard normal random variable. 

 

For the purpose of simplifying the presentation regarding Equation 18, let the subscripts 

be dropped and the first and second function be denoted as +Φ  and −Φ , respectively. A 



direct method to obtain a deterministic equivalent of Equation 18 is to replace constraint 

equation 18 by the following three constraints. 
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Here 'α  and "α  are the unknown reliabilities for achieving each new equation. In doing 

so, two equations (one linear and one nonlinear) and decision variables ( 'α  and "α ) are 

added to this model. Hence, in a problem having several two-sided goals, this approach 

could result in an additional large number of decision variables and nonlinear constraints. 

In the following, a derivation is presented that leads to a formulation having only one 

extra linear constraint with no new decision variable added to the model. 

 

As argued previously, the objective of a two-sided goal is to find the solution having the 

shortest interval ( , )G D G D− +− +  with α  goal reliability compliance. Therefore, 

derivation of the deterministic equivalent of a two-sided goal can be written as  

0Min D D D+ −= + .    (22) 

subject to 
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To solve the mathematical programming problem 22 - 23, the Lagrangian method is used. 

The Lagrangian function is thus given by 

  ( , , ) ( )Min L D D D Dλ λ α+ − + − + −= + + Φ − Φ −   (24) 

in which λ  is the Lagrangian multiplier. The solution to the above Lagrangian function 

( , , )L D D λ+ −  must satisfy 
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   0Lδ αδλ
+ −= Φ − Φ − =      (27) 

in which φ +  and φ −  are the pdf of the standard normal random variables. Solving 

Equations 25 and 26 simultaneously, the following results were obtained: 
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Since the square root of 'Σx x  is a positive value and λ  is a non-zero, thus 

     0φ φ+ −− =      (29) 

which implies two possible solutions to the problem: 

  Either 
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Equation 30 indicates that D D+ −= . By substituting the equated value of D+  in the 

original probability statement, Equation 16, yields 

    'P G D G D α− − − ≤ ≤ − > c x    (32) 

which is equal to 

    'P G D α− = − > c x .    (33) 

Since the model deals with a continuous random variable and G and D−  are non-

random, then the probability of a random variable to be equal to a fixed value is equal to 

zero. Hence, the solution given by Equation 30 is infeasible. 

The solution represented by Equation 31 is equivalent to 

   ( ') ( ')G D E G D E+ −+ − = − + +c x c x    (34) 

which can be written as 

    2 ( ') 2 .E D D G+ −− + =c x     (35) 

 

Substituting the results obtained from Equation 31 into Equation 23, we have 
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After some algebraic manipulations on Equation 36, the following equation can be 

obtained: 
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The deterministic equivalent of Equation 37 then is  
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where 1
z
−Φ  is the inverse CDF of the standard normal random variable. 

 

3.2. Summary of Proposed CCGP Model 

 

The derivations of deterministic equivalents of chance-constrained two-sided and one-

sided goals have been given in the previous section. A general chance-constrained goal-

programming model should include all of these constraints in order to take into 

consideration any possible conflicting two-sided and one-sided goals. Thus, the general 

model, based on Equations 7, 14, 15, 35, and 38 may be summarized as 

  0
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subject to 

   '( ) .5 .5 ,r r r rE D D G+ −− + =c x  for all r   (40) 
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  [ ] [ ].5' 1( ) 1 ' ,t t z t t tE D Gα− −+ + Φ − • Σ ≥c x x x  for all t  (43) 



      ≥x 0      (44) 

  , , , 0r r s tD D D D+ − + − ≥ , for all r, s, and t.    (45) 

 

The above model can be generalized even further by including the regular constraints of a 

deterministic form, a probabilistic form, or a mixture of both in the model. 

 

4. A PROPOSED SOLUTION ALGORITHM 

 

A deterministic goal programming model follows a linear programming format which 

can be easily solved by the simplex algorithm. However, the deterministic equivalent 

transformation of chance-constrained goal programming constraints leads to the presence 

of non- linearity, which cannot be solved directly by the linear programming technique. 

Therefore, the problem becomes one of non- linear optimization, which can be solved by 

various non- linear programming techniques such as the generalized reduced gradient 

technique (10). 

 

Alternatively, this paper adopts a procedure to linearize the non- linear terms of the 

chance constraints in the CCGP model similar to the successive linear programming 

procedure (11) and solve the linearized model iteratively. The "linearized" constraints in 

the CCGP model are obtained by moving the non-linear terms to the RHS of the 

constraints and can be written as 

  
.5' 1 0(1( ) '2

r
r r r z rE D G α+ − +   − ≤ − Φ • Σ   
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  [ ] .5' 1 0( ) 's s s z s sE D G α+ −  − ≤ − Φ • Σ c x x x    (47) 

  [ ] .5' 1 0( ) 1 't t t z t tE D G α− −  + ≥ − Φ − • Σ c x x x    (48) 

where 0x  is an assumed solution vector to the optimal CCGP model. Consequently, the 

linearlized CCGP model can be solved by the LP technique iteratively, each time 

comparing the values of the current solutions with those obtained in the previous 

iteration. Then, updating the assumed solution values, using them to compute the 

variance term on the right hand sides, until convergence criteria are met. Of course, 

alternative stopping rules, such as specifying the maximum number of iterations, can also 

be added in order to prevent excessive iteration during the computation. However, prior 

to the application of these procedures, an assumption for the distribution of the 

standardized random variable Z must be made so that the terms 

[ ] [ ]1 1 1(1 , , and  12
r

z z s z t
α α α− − −+ Φ Φ Φ −  

 in Equations 46 through 48 can be 

evaluated. 

 

Due to the non-linear nature of the CCGP model, the optimum solution obtained, in 

general, cannot be guaranteed to be the global optimum. Thus, it is suggested that a few 

runs of these procedures with different initial solutions should be carried out to ensure 

that the model solution converges to an overall optimum. 

 

5. ILLUSTRATION 

 



A financial and production example illustrating the proposed model in this paper was 

adopted from Weingartner (12), and Hawkins and Adams (13). The problem considers 

nine mutually exclusive projects with given net present values for each project and a 

certain configuration of fund outlay over a two-year period. The objective is to maximize 

the present values of these investments in the context of a fraction of the adopted 

investment proposal, given a budget constraint of $50 for the first period and $20 for the 

second period. Hawkins and Adams (13) modified the problem under the assumption that 

this is a manufacturing firm in which each investment proposal is expected to yield a 

certain amount of revenue in each period and utilize a specified number of man-hours per 

day. Table 1 lists the investment proposals along with their net present values and the 

present values of outlays, sales, and man-hours for each period. 

 

Assume that the top management of the firm establishes the following goals: 

a) The project as a whole must yield a net present value of at least $32.40. So it is a 

one-sided goal because there is no penalty if it is more than this amount. 

b) The sales must be at least $70 for the first period. It again is a one-sided goal 

because if it is more than this amount, it is desirable but if it is less, it causes carrying 

costs or the liquidation of products at a much lower price. 

c) The sales must be at least $84 for the second period. This is a one-sided goal 

similar to goal b). 

d) The man-hours of labor per day must be exactly 40 for the first period. This is a 

two-sided goal because any deviations (whether upward such as payment for overtime or 

downward such as idle time of employees) are not desirable. 



e) The man-hours of labor per day are to be exactly 40 for the second period. Again, 

it is a two-sided goal similar to goal d). 

  

The problem has so far dealt with the certainty case. However, because of uncertainty 

associated with the objective function coefficients in each goal, the top management 

wishes to achieve the goals with certain pre-assigned reliabilities 1 2( , ,... )kα α α . In 

addition, it is assumed that the objective function coefficients are independent normal 

random variables, with the means given in Table 1 and standard deviations equal to some 

percentage of the means. 

 

The CCGP model for this problem can be formulated as 

   0 1 2 3 4 5 5Min D D D D D D D− − − − − += + + + + +   (49) 

subject to 

     '
1 1 1 1P G D α− ≥ − > c x    (50) 

     '
2 2 2 2P G D α− ≥ − > c x    (51) 

     '
3 3 3 3P G D α− ≥ − > c x    (52) 

    '
4 4 4 4 4 4P G D G D α− + − ≤ ≤ + ≥ c x   (53) 

    '
5 5 5 5 5 5P G D G D α− + − ≤ ≤ + ≥ c x   (54) 

      '
1 1b≤a x     (55) 

      '
2 2b≤a x     (56) 



      ≥ ≥1 x 0     (57) 

    1 2 3 4 4 5 5, , , , , , 0D D D D D D D− − − − + − + ≥    (58) 

 

where vector 1c  through 5c  the coefficients of goal constraints, represent the present 

values of investment, the sales in period 1 and period 2, and man-hours in period 1 and 

period 2, respectively. Vectors 1a  and 2a  in constraints 55 and 56 are the technological 

coefficients of regular deterministic constraints representing the present values of outlay 

in period 1 and period 2, respectively. 

 

To examine the effects of the specified reliability levels and the level of uncertainty for 

the optimal solutions, the financial and production example with 5%, 10%, 25%, and 

50% standard deviations and various reliabilities as 85%, 90%, and 95% were solved and 

the results are given in Table 2. 

 

In examining the results presented in Table 2, the total amount of optimal deviations is 

sensitive to various standard deviations and reliabilities. For a given uncertainty level of 

model parameters, the total amount of optimal deviations is increased as the reliability 

requirement of the goal constraints increases. For instance, at 5% standard deviations for 

the coefficients in goal constraints, an increase in reliability from .85 to .95 for all goals 

results in an increase in the total amount of optimal deviations from 32.6 to 35.0. This 

indicates that in order to achieve the goals with high reliability, more total deviations 

should be anticipated in the objective functions. By increasing the standard deviations for 

the same level of reliability, as might be expected, the value of the objective function is 



increased.  For example, by increasing the standard deviations for all coefficients of goal 

constraints from 5% to 25% under a 90% reliability for each goal, the optimal value of 

the objective function is increased from 33.6 to 54.0. Computationally, it appears that the 

number of iterations required to converge also increases when the uncertainty of model 

parameters increases. 

 

The tabulated values in Table 2 present a good indication of relationships and how 

sensitive the total amount of optimal deviations is to various standard deviations, 

reliabilities, and the number of iterations. These results can be explained by the fact that, 

as the reliability for each goal constraint is increased, it is equivalent to imposing stricter 

standard deviations on random coefficients in order to minimize the total deviations. 

 

6. CONCLUSION 

 

The CCGP model has been used in various areas of multi-objective problems. This 

research has proposed a new formulation for chance-constrained goal programming 

model which preserves the original characteristic of the problem without changing the 

problem's goal. It also utilizes the concept of the confidence interval due to the 

randomness of objective coefficients which are continuous random variables. 

 

The results obtained from applying the model to a multiple-objective example revealed 

the contribution of the model to the managerial decisions in terms of the reliability 

specified for the goal accomplishment and the total amount of goals deviations. 



 

Finally, because of the uncertainty one may encounter in a real world problem, the 

developed CCGP model not only takes into account the risk and uncertainty involved in 

the coefficients of goal and regular constraints, but also has plausible representation of 

the nature of the goals, whether they are one-sided or two-sided. 

 



Table 1:  Data of the Investment Proposals Example Used in the CCGP Model 

 

PV of Outlay Sales Man-Hours Investment 

Project 

PV* of 

Investment Pd 1 Pd 2 Pd 1 Pd 2 Pd 1 Pd 2 

1 $14 $12 $3 $14 $15 10 12 

2   17   54   7   30   42 16 16 

3   17     6   6   13   16 13 13 

4   15     6   2   11   12   9 13 

5   40   30 35   53   52 19 16 

6   12     6   6   10   14 14 14 

7   14   48   4   32   34   7   9 

8   10   36   3   21   28 15 22 

9   12   18   3   12   21   8 13 

*PV = Present Value 

 



Table 2: Results From the Execution of Example CCGP Problem With Various Standard 

Deviations and Reliabilities But Equal Weight Criterion 

 

S.D. 5% 10% 25% 50% 

Reli .85 .90 .95 .85 .90 .95 .85 .90 .95 .85 .90 .95 

1x  .332 .305 .266 .220 .168 .090 .000 .000 .000 000 .000 1.00 

2x  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

3x  1.00 1.00 1.00 1.00 1.00 1.00 .918 .816 .682 .536 .642 .327 

4x  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5x  .251 .253 .255 .258 .261 .255 .285 .302 .325 .350 .332 .324 

6x  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

7x  .551 .557 .564 .575 .586 .602 .623 .625 .627 .630 .628 .423 

8x  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

9x  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

1D−  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

2D−  11.8 12.3 13.0 13.8 14.7 16.2 19.7 21.9 25.1 28.9 32.2 33.4 

3D−  20.8 21.3 22.0 22.9 24.0 25.5 29.5 32.1 35.8 40.2 43.3 45.0 

4D−  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

4D+  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 5.27 

5D−  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 



5D+  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 3.32 14.1 

0D  32.6 33.6 35.0 36.7 38.7 41.7 49.2 54.0 60.9 69.1 78.8 97.7 

#Ite 3 3 3 3 3 3 3 4 4 4 4 4 
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